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The existence of a continuous best approximation or of near best approximations
of a strictly convex space by a subset is shown to imply uniqueness of the best
approximation under various assumptions on the approximating subset. For more
general spaces, when continuous best or near best approximations exist, the set of
best approximants to any given element is shown to satisfy connectivity and radius
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1. INTRODUCTION

An approximant within = of the best possible is usually satisfactory from
a practical standpoint. The idea of extending best approximation to near
best approximation has been investigated for many years; see [1; 3; 8,
p. 162]. ``Near best'' has several possible interpretations, and the one used
here is a map ,: X � M for which &x&,(x)&�&x&M&+=. In this paper
we investigate when best or near best approximations of a normed linear
space by elements of a subset can have a continuous selection. Under
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various conditions on the ambient space and the subset we derive topologi-
cal and geometric consequences of the existence of continuous best and
near best approximations.

The paper is organized as follows. Section 2 gives our main theorems.
We show that continuity of best approximation implies uniqueness when
the ambient space is strictly convex. We also show that continuity of near
best approximations with arbitrarily small = is enough to guarantee unique-
ness in a strictly convex space when the subset is boundedly compact and
closed. The next two sections generalize these results by removing the con-
dition of strict convexity on the ambient space. In Section 3 the set of best
approximants to a point may no longer be a singleton but is shown to have
topological properties such as contractibility, while Section 4 establishes an
upper bound on the Chebyshev radius of the approximant set in terms of
the modulus of convexity.

2. CONTINUITY CONDITIONS FOR UNIQUE
BEST APPROXIMATION

In this section we demonstrate that the existence of a continuous best
approximation or of a suitable family of continuous near best approxima-
tions defined on a strictly convex space X and taking values in a suitable
subset M necessarily implies that M has the unique best approximation
property.

Let X be a normed linear space, always taken to be over the reals. The
space X is strictly convex iff whenever x and y are distinct unit vectors all
nontrivial convex combinations of the two have norm less than 1. For x in
X and r�0, let B(x, r) denote the closed ball centered on x of radius r,
with �B(x, r) its boundary sphere. For any subset A we write cl(A) for its
closure.

If M is a subset of X, we denote by PM (x) the set [m # M :
&x&m&=&x&M&]. An element of PM (x) is called a best approximation to
x; PM is a set-valued function which associates to each x in X the (possibly
empty) set of all its best approximations. The terminology metric projection
operator is also used for PM (see [8]).

If PM (x) is nonempty for each x in X, M is said to be proximinal. If
PM (x) is a singleton for each x in X, M is called a Chebyshev set. In the
latter case, we use a lower-case ``p'' to denote the metric projection func-
tion; that is, when M is Chebyshev, pM : X � M is the unique function
satisfying PM (x)=[ pM (x)] for all x in X.

A selection for a set-valued function 8 is a function , such that ,(x) is
in 8(x) for each x. Given a nonempty subset A of X, a best approximation
of A by M is a function ,: A � M such that &x&,(x)&=&x&M& for all
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x in A. Thus a best approximation is a selection for the metric projection
operator. Our first result, a version of which appeared in [5], deals with
the case when continuous selections exist. See also [7].

Theorem 2.1. Let X be a strictly convex normed linear space, and let M
be a subset of X. Let ,: X � M be a continuous best approximation of X by
M. Then M is a Chebyshev set.

Proof. Since ,(x) # PM (x) for all x, PM (x) is nonempty. Given x in X,
let m belong to PM (x). For y in the line segment [m, x), and u in PM ( y),
&u&x&�&u&y&+&y&x&�&m&y&+&y&x&=&m&x&�&u&x&. Hence,
the inequalities are all equalities, u is in PM (x), PM ( y) � PM (x), and
m # PM ( y). Since &u&x&=&u& y&+&y&x&, a consequence of strict con-
vexity is that u, y, and x are collinear. So u=m and PM ( y)=[m]. Since
, is directionally continuous at x and ,([m, x))=[m], it follows that
,(x)=m. Thus PM (x)=[,(x)] is a singleton set. K

In case X is not strictly convex, there do exist subsets M of X for which
a continuous best approximation of X by M exists without M being
Chebyshev.

Example 2.2. Let X=R2 equipped with the l1 -norm &(a, b)&=
|a|+ |b|. With this norm, R2 is not strictly convex. Let M=[(a, b) :
b=\a]. Then, with x=(0, 1), &x&M&=inf[ |a|+|\a&1| : a # R]=1,
and PM (x)=[(a, |a| ) : |a|�1]. So M is not a Chebyshev set. However, a
continuous best approximation of R2 by M does exist, namely, the map ,
given by: ,(a, b)=min[a, b] for (a, b) in the first quadrant, with similar
prescriptions in the other three quadrants. Note, in addition, that M is
almost convex (see Huotari and Li [4]); i.e., any closed ball that does not
meet M lies inside arbitrarily large closed balls that also do not meet M.

For a subset A of X and a positive number =, an =-near best approxima-
tion of A by M is a map ,: A � M such that &x&,(x)&�&x&M&+= for
all x in A (see [1, 8]). A subset M of X is boundedly compact iff the closure
of M & B is compact for each closed ball B in X.

Theorem 2.3. Let X be a strictly convex normed linear space, and let M
be a closed, boundedly compact subset of X. Suppose that for each =>0 there
exists a continuous =-near best approximation ,: X � M of X by M. Then M
is a Chebyshev set.

Proof. Since M is boundedly compact and closed, any sequence [mn]
in M with limn � � &x&mn&=&x&M& accumulates at a point m in M,
and so PM (x) is nonempty. Thus M is proximinal.
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Let x0 be a point in X with r=&x0&M&>0. Given an integer n�1, let
,n : X � M be continuous with &x&,n (x)&�&x&M&+ 1

n for all x in X.
Then ,n : B(x0 , r) � M and &,n (x)&x0&�r for x in B(x0 , r). Let

?: [x: &x&x0&�r] � [x: &x&x0&=r]=�B(x0 , r)

be the radial retraction, i.e.,

?(x)=x0+r
x&x0

&x&x0&
.

Then ? b ,n : B(x0 , r) � �B(x0 , r). Now ,n (x), for x in B(x0 , r), satisfies
&,n (x)&x0&�&x&M&+ 1

n+&x&x0&�2 &x&x0&+&x0&M&+ 1
n�3r+1.

Hence, ,n (B(x0 , r))�M & B(x0 , 3r+1) and ,n (B(x0 , r)) is a bounded
subset of M. So cl(,n (B(x0 , r))) is compact since M is boundedly compact.
Let \: X � X be the reflection through x0 , i.e., \( y)=x0+(x0& y).
Then cl (\ b ? b ,n (B(x0 , r)))=\ b ?(cl,n (B(x0 , r))) is a compact subset of
�B(x0 , r), and \ b ? b ,n is a continuous function from B(x0 , r) into this set.

Rothe's Theorem (see [9, p. 27]), a version of Schauder's Theorem,
asserts that any continuous map from the closed ball B into X taking �B
into a compact subset of B has a fixed point. Hence, for each n, \ b ? b ,n

has a fixed point xn in B(x0 , r). Thus,

xn=\ b ? b ,n (xn)=2x0&? b ,n (xn),

and

? b ,n (xn)=2x0&xn .

It follows that the points xn , x0 , 2x0&xn=? b ,n (xn), and ,n (xn) are con-
secutive collinear points (with the last two possibly equal), and thus
&,n (xn)&xn&�&? b ,n (xn)&xn &=&2x0&2xn&=2r. In addition, for each
point m in M,

&xn&m&�&xn&,n (xn)&&
1
n

�2r&
1
n

. (1)

Again because M is boundedly compact, the sequence [,n (xn)] in
M & B(x0 , 3r+1) has a convergent subsequence with limit u in X. Then the
sequence [xn], where xn=\ b ? b ,n (xn), has a convergent subsequence with
limit \ b ?(u)=x� # �B(x0 , r).

Moreover, for each m in M, because of (1)

&(x�&x0)+(x0&m)&=&x�&m&�2r.

255BEST AND NEAR BEST APPROXIMATIONS



If m is in PM (x0), then &x0&m&=r. By strict convexity, used here for the
first time, when &(a+b)�2&�r and &a&=&b&=r, then a=b. So we con-
clude that x�&x0=x0&m and m=2x0&x� . Thus PM (x0)=[2x0&x�]
is a singleton set. This being true for all x0 , M is Chebyshev. K

Since metric projection to a closed, boundedly compact Chebyshev sub-
set is continuous (see [8, p. 390]), our result says that in a strictly convex
space the existence of continuous arbitrarily precise near best approxima-
tions is equivalent to the existence of a unique best approximation which
is continuous.

A set M is positively homogeneous provided *M=M for each positive
number *. If M is nonempty, closed and positively homogeneous, then 0 is
in M.

The next theorem gives conditions under which the existence of a single
continuous near-best approximation is sufficient to guarantee continuous
unique best approximation.

Corollary 2.4. Let X be a strictly convex normed linear space, and let
M be a closed, boundedly compact, positively homogeneous subset of X. Sup-
pose that for some =>0 there exists a continuous =-near best approximation
,: X � M of X by M. Then M is a Chebyshev set.

Proof. For *>0, consider the maps ,* defined by ,* (x)=*,( x
*) for x

in X. The map ,* is continuous. It is a *=-near best approximation of X by
M since &,* (x)&x&=* &,( x

*)& x
*&�*(&x

*&M&+=)=&x&M&+*= for x
in X. Theorem 2.3 can be applied to this family of maps. K

A special case of some interest is when M consists of a finite union of
finite-dimensional subspaces. See [5, Theorem 3.6].

3. CONTINUITY CONDITIONS FOR CONNECTIVITY OF PM (x)

Theorems 2.1 and 2.3 are special cases of a family of results that we now
develop in more detail. The following result was established in the proof of
Theorem 2.1 without the requirement that X be strictly convex.

Lemma 3.1. Let X be a normed linear space, M a subset of X, x an
element of X, and m an element of PM (x). Then for each y # [m, x],
[m]�PM ( y)�PM (x).

For x in X and S a subset of X, let x V S denote the union of all line
segments with one endpoint in S and the other equal to x. The tangent
hypercone to the closed ball B at the point x # �B is the union of all closed
affine hyperplanes containing x but not meeting the interior of B. Such
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hyperplanes are said to be tangent to B at x. By Mazur's version of the
Hahn�Banach Theorem (see [2, p. 23]) any line (or flat) through x that
does not meet the interior of B lies in a closed affine hyperplane tangent to
B at x, and hence is in the tangent hypercone to B at x.

A subset A of a space X is called contractible to a point a0 in A if there
is a continuous map h: A_[0, 1] � A with h(a, 0)=a and h(a, 1)=a0 for
all a in A (see [10, p. 25]).

Theorem 3.2. Let X be a normed linear space and M a subset of X. Let
x be an element of X with r=&x&M&>0 and PM (x) nonempty. Let
,: x V PM (x) � M be a continuous best approximation of x V PM (x) by M.
Then

(i) PM (x) is contractible to ,(x);

(ii) PM (x) is a subset of the tangent hypercone to B(x, r) at ,(x).

Proof. Define h: PM (x)_[0, 1] � PM (x) by h(m, t)=,((1&t) m+tx).
By Lemma 3.1 the range of this map is a subset of PM (x). Since
PM (m)=[m] for m # M, ,(m)=m for points m # PM (x), h is a homotopy
between the identity map on PM (x) and the constant map with output
,(x).

If PM (x) consists of two or more points, let one of them be ,(x) and let
another be m. Let y be a point on the open interval (m, x) with ,( y� ){m
for y� in [x, y). Such a point y exists by continuity of , at x. Then as in
Theorem 2.1 &,(x)&x&=&,( y)&x&=&,( y)& y&+&y&x&. Choose y$ on
the open interval (x, ,( y)) such that &y$&x&=&y&x&. Then all points on
the line segment [ y, y$] are equidistant from x. This follows from the fact
that each such point has distance to x bounded above by &y$&x&=
&y&x&, and distance to ,( y) bounded above by &y$&,( y)&=&x&,( y)&
&&x& y$& = &x&,( y)& & &x& y& = &x&,(x)& & &x& y& = &y&,(x)&
=&y&,( y)&. Since the sum of these two distances is thus bounded above
and below by &x&,( y)&, all bounds are equalities. Expanding this line
segment radially from x by a factor of

&m&x&
&y&x& , we obtain the line segment

[m, ,( y)] and each point on this line segment is equidistant from x as well.
Varying y toward x, we find that the points on the line segment [m, ,(x)]
are all at distance r=&x&M& from x. Thus the line through m and ,(x)
is a tangent line to B(x, r) at ,(x) and hence m lies in the tangent hyper-
cone to B(x, r) at ,(x). K

Since PM (x) is contractible, it is path-connected and has trivial homol-
ogy.

When a continuous best approximation is defined on all of X, a fortiori
PM (x) is contractible for every x in X. Thus M belongs to a class of sets
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called ``C2 '' by Klee [6] (see also [8, p. 370]). If, in addition, X is strictly
convex, each tangent hypercone intersects the ball at a single point, and
PM (x)=[,(x)] for all x. This implies Theorem 2.1.

Note that the conclusions of Theorem 3.2 are illustrated in Example 2.2
by the subset PM (0, 1).

Versions of Theorem 2.3 also hold without the assumption of strict
convexity.

A set M is approximatively compact iff whenever x # X and [mn] is a
sequence in M such that limn � � &x&mn &=&x&M&, then [mn] has a
convergent subsequence with limit in M. An approximatively compact set
is always closed. Conversely, a set that is both closed and boundedly com-
pact is approximatively compact since the sequence [mn] is bounded and
hence has a convergent subsequence.

We remark that if M is an approximatively compact set in a normed
linear space, then PM (x) is compact for each x in X. Indeed, any sequence
[mn] in PM (x) is a sequence in M with &mn&x&=&M&x&, and by the
definition of approximative compactness has a convergent subsequence
with limit in M, and hence in PM (x).

If M is an approximatively compact Chebyshev set, then pM is con-
tinuous on X (see [8, p. 390]). Theorem 2.1 says that if PM has a con-
tinuous selection in a strictly convex space X, then M is Chebyshev. In the
absence of strict convexity, Example 2.2 above shows that even if M is
approximatively compact and PM has a continuous selection, M need not
be Chebyshev.

The next result says that if we vary the hypotheses of Theorem 3.2 by
requiring near best approximations but insist that M be approximatively
compact, then PM (x) retains the basic topological property of being con-
nected.

Proposition 3.3. Let M be approximatively compact in the normed
linear space X, and let x be an element of X. Suppose that for each =>0
there is a continuous =-near best approximation ,= : x V PM (x) � M of
x V PM (x) by M. Then PM (x) is connected.

Proof. If, to the contrary, PM (x) were not connected, there would exist
distinct open sets U1 and U2 covering PM (x) with PM (x) & U1{<{
PM (x) & U2 and PM (x) & U1 & U2=<. Let A=PM (x) & U c

1 and B=
PM (x) & U c

2 where S c denotes the complement of the set S in X. Then, by
our remark above, A and B are compact. They are also disjoint, nonempty
and their union contains PM (x). Since the distance from A to B is positive,
there exist disjoint open neighborhoods V1 of A and V2 of B.

Pick z1 # A and z2 # B. Choose = sufficiently small so that B(zi , =)�Vi ,
i=1, 2. The =-near best approximation ,= takes [z1 , x] _ [x, z2] into a
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path in M from ,= (z1) to ,= (z2) so that &,= (zi)&zi&�&zi&M&+=== for
i=1, 2. Then ,= (zi) # Vi for i=1, 2.

Because V1 & V2=< there is a point m= in (V1 _ V2)c with m==,= (x=)
for some x= in [z1 , x] _ [x, z2], and we claim that &m=&x&�&M&x&+=.
Indeed, &m=&x&�&m=&x=&+&x=&x&�&M&x=&+=+&x=&x&�&zi&x=&
+&x=&x&+==&zi&x&+==&M&x&+= where i=1 or 2 according as x=

is in [z1 , x] or [z2 , x].
As = approaches 0, &m=&x& approaches &x&M&. Since m= is in M for

each =>0 and M is approximatively compact, we can find a sequence in
the set [m= : =>0] with limit m in M satisfying &m&x&=&M&x&. So m
is in PM (x)=A _ B�V1 _ V2 . But m is the limit of points in the comple-
ment of the open set V1 _ V2 , for a contradiction. K

Connectivity of PM (x) implies that if PM (x) contains more than one
point, it contains an uncountable number of points.

Corollary 3.4. Let X be a normed linear space, and M an approxi-
matively compact subset of X which is countably proximinal (i.e., PM (x) is
nonempty and countable) for each x in X. Suppose that for each =>0 there
exists a continuous =-near best approximation ,: X � M of X by M. Then M
is a Chebyshev set.

Proof. By Proposition 3.3, for each x, PM (x) is connected. The only
nonempty countable connected set is a singleton. K

Note that if M is proximinal and a countable union of Chebyshev sets,
then M is countably proximinal.

Theorem 3.5. Let X be a normed linear space, M a closed, boundedly
compact subset of X, and x an element of X with r=&x&M&>0. If,
for each =>0, there exists a continuous =-near best approximation
,: B(x, r) � M of B(x, r) by M, then

(i) PM (x) is connected, and

(ii) PM (x) is a subset of the tangent hypercone to B(x, r) at some
point on �B(x, r).

Proof. Since a closed, boundedly compact subset is approximatively
compact, connectedness of PM (x) is a consequence of Proposition 3.3.

The remainder of the proof repeats the proof of Theorem 2.3 (with x0 in
place of x) until strict convexity is mentioned. For each point m in PM (x0),
we have that &x�&m&�2r where r=&m&x0&=&x�&x0&=&M&x0&.
Since &*(x0&x�)+(1&*)(m&x0)&�r for 0�*�1 and &1

2 (x0&x�)+
1
2 (m&x0)&�r, it follows that the line joining 2x0&x� to m does not meet
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the interior of B(x0 , r). Hence m is in the tangent hypercone to B(x0 , r)
at 2x0&x� . K

4. BOUNDS ON THE RADIUS OF PM (x)

In addition to topological properties, one can also deduce constraints on
the radius of the approximant set PM (x). Recall from [2, p. 111] that the
Chebyshev radius of a set A with respect to a point x is the number
sup[&x&a& : a # A]. The following lemma restates a result obtained in the
first part of the proof of Theorem 2.3 (up through Eq. (1)).

Lemma 4.1. Let X be a normed linear space, M a boundedly compact
subset of X, and x an element of X with r=&x&M&>0. Suppose that for
some =, with 0<=<2r, there exists a continuous =-near best approximation
,: B(x, r) � M of B(x, r) by M. Then there exists a point x� in �B(x, r) such
that &x� &m&�2r&= for all m in M.

In particular, any point m in PM (x) is at distance 2r&= or more from
x� and at distance r from x. In a Hilbert space the right triangle with legs
from m to x� and from m to 2x&x� has hypotenuse 2r and one leg of length
�2r&=. Accordingly its other leg, between m and 2x&x� , has length at
most - 4=r&=2. Thus the Chebyshev radius of PM (x) with respect to the
point 2x&x� is less than or equal to - 4=r&=2.

For more general spaces we consider two notions associated with the
geometry of the unit sphere.

In a normed space X define a function $X called the modulus of convexity
of X by $X (t)=inf[1& 1

2 (&x+ y&) : &x&=&y&=1, &x& y&�t] for t a real
number. The function $X is a nondecreasing function and satisfies $X (0)=0
(see, e.g., [2, p. 145]), $X (2)�1, $X (t)=� for t>2. If the modulus is
strictly positive-valued for t strictly positive, the space X is said to be
uniformly convex.

A related measure of convexity is the function |X . For t<1, let
|X (t)=sup[&x& y& : 1&t�& x+ y

2 &, &x&=&y&=1], and set |X (t)=2 for
t�1. Then |X is a nondecreasing function. In a uniformly convex space
X, |X (t)>0 for t>0 and limt � 0 |X (t)=0.

The following inequality can be easily verified,

|X (t)�sup [s: $X (s)�t]

for all real numbers t. Equality occurs if t<0 or �1, or if X is finite-
dimensional.
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Theorem 4.2. Let X be a normed linear space, M a boundedly compact
subset of X, and x an element of X with &x&M&=r>0. Suppose that for
some =, with 0<=<2r, there exists a continuous =-near best approximation
,: B(x, r) � M of B(x, r) by M. Then there exists a point x$ on �B(x, r) such
that Rx$ (PM (x)), the Chebyshev radius of PM (x) with respect to x$, satisfies

Rx$ (PM (x))�r|X \ =
2r+ .

Proof. Let x$=2x&x� where x� is as in Lemma 4.1. Then u=(m&x)�r
and v=(x$&x)�r are unit vectors in X with &(u+v)�2&=&(m&x� )�2r&�
1&=�2r. Hence, &(m&x$)�r&=&u&v&�|X (=�2r). K

If X is uniformly convex and there is a continuous =-near best
approximation of X by the closed set M for every =>0, the diameter of
PM (x) is zero for each x and so M is Chebyshev. This conclusion also
follows from Theorem 2.3 since uniform convexity implies strict convexity.

Example 2.2 illustrates that in some non-strictly convex spaces the lower
bound of 2r&= does not limit the radius of the approximating set. With the
norm as in 2.2, the points (0,1), (1,0), and (&1�2, &1�2) are unit vectors
and their distances apart are all equal to 2. The fact that any one of them
is ``far'' from the other two does not force those two to be close together.
Indeed, in this case |x(t)#2 for t�0.
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